

WINTRE: AN ADVERSARY EMULATION TOOL

Final Report

Student: Martin Earls / C00227207
Supervisor: Richard Butler

Contents
1 Abstract .. 3

2 Introduction .. 4

3 Final Product ... 5

3.1 Features .. 7

3.2 Features Not Achieved .. 8

4 Problems Encountered and Solutions ... 9

4.1 Reporting ... 9

4.2 Compilers .. 9

4.3 Storing Technique Details ... 10

4.4 Dynamically Adding New Techniques .. 10

4.5 File Structure ... 10

5 Future Design Considerations .. 11

6 Product Testing ... 11

1 ABSTRACT
This document outlines the final product that was produced i.e., "WINTRE" to perform
adversary emulation, the process of developing the product, its features and an overview of the
product.

WINTRE involves a C# GUI application that can execute tactics, techniques and procedures
(TTPs) based on popular methods utilised by threat actors and advanced persistent threat
groups. This app can be used to run techniques and produce detailed logs to help an organisation
test their detection analytics. This helps to generate indicators of compromise whilst providing
documentation for an organisation to help gain visibility over what techniques they’re able to
detect in their environment and ones they’re not able to, in order to improve an organisation's
security posture.

2 INTRODUCTION
WINTRE focuses on providing a solution for endpoint security testing, based on adversary
simulation, i.e., the process of running techniques used by attackers or malware in cyber-attacks
in a controlled environment in order to assess whether or not the current endpoint protections
are sufficient and if detection analytics are working as intended.

An organisation ideally needs to be able to block and detect attacks that may occur.
WINTRE simplifies validation of this process, with 40+ pre-built techniques, custom technique
implementation and automated reporting while covering the majority of tactics used in the post-
exploitation phase of an attack. WINTRE can also act as a major cost saving measure by
allowing an organisation to evaluate and validate the cost of their existing endpoint security
controls.

3 FINAL PRODUCT

Screenshot of the main techniques page.

Create Campaign Page.

Load campaigns page.

Custom Techniques Page.

Automated Reports page.

3.1 FEATURES

 Perform adversary simulation on Windows endpoints.
 Locally compiles each simulation test into a separate executable (in-case of anti-virus

quarantining).
 Support for dynamic C# and C++ compilation (improved technique coverage).
 Campaigns feature allowing you to keep track of which techniques you've ran, enabling

the ease of re-testing by automatically loading those techniques into a queue when re-
testing.

 Highly extendible, custom technique creation, allowing the user to define new techniques
based on command line scripting (via Command Prompt or PowerShell).

 Windows API based techniques can also be added easily by directly adding the relevant
source code files.

 Automated reporting via Microsoft Word generating tables automatically that include all
the relevant details needed to document the testing process.

 Techniques covering code execution, discovery, persistence, command and control,
defence evasion, collection, impact, data exfiltration and credential theft.

 Allows the simulation of spyware, assumed breach scenarios, ransomware attacks and
password stealers.

3.2 FEATURES NOT ACHIEVED
Some features that were researched during the initial development phase were not completed to
time constraints and complexity involved:

 Privilege escalation techniques - The act of privilege escalation itself is generally more
difficult to emulate than other techniques such as code execution ones. UAC bypasses
were considered and researched as well as token impersonation, a well-known privilege
escalation technique. Ultimately prototypes were developed for both as well as utilising
existing open-source research such as UACMe (repository of UAC bypasses) but were
not suitable for the production in the given time necessary.

 Lateral movement techniques - Initially techniques similar to those utilised in Microsoft's

SysInternals tool PsExec which are used in lateral movement were considered and
researched. After further researching the time investment required to truly understand
and code these techniques from the ground up it was decided to focus more on the user
experience and other technique categories.

 Defense evasion techniques - I researched and began developing various defense evasion
techniques such as process injection that utilise Windows API functions. Due to time
constraints, I was unable to fully complete and include these techniques in the final
solution.

4 PROBLEMS ENCOUNTERED AND SOLUTIONS
4.1 REPORTING
Automated reporting had several complications during the development process. Firstly, the
automated tracking of techniques was required in order to dynamically update the report in the
background whilst allowing the user to generate a preview of the report.

Initially, I was unable to update the report properly due to file lock issues. To solve this issue, I
began dynamically tracking which techniques had been ran using list arrays per category of
technique. These lists would then be serialized as JSON. The JSON, acting as temporary files per
session could then be parsed and the table generated on the deserialized data.

Example JSON structure of report in progress (generated automatically using JSON.NET).

Generating a report preview also initially proved challenging as Windows Presentation
Foundation does not have any native components capable of presenting a word document. To
solve this, I was able to convert the word document in progress as an XPS document, which
could then be loaded in a document viewer component.

This introduced another issue when generating multiple previews in the same session as the XPS
file used as the preview would become locked as well. In order to mitigate this, it was necessary
to manually access the XpsPackage handle and allow for the file lock to be lifted, removing the
loaded preview file and re-generating the report to load a new XPS document.

4.2 COMPILERS
In order to support both C# and C++ techniques it was necessary to figure out what command
arguments would work for the majority of use cases to allow dynamic compilation of either C#
or C++ source code files. The application compiles each technique that is ran into a separate
executable to prevent quarantining of that file. I considered using GCC or other compilers and
ended up opting for the Visual Studio compiler using cl.exe due to it being built into my
development environment and being familiar with it.

It made testing easier but getting the correct arguments to prevent compiler errors took time to
test out. Now with C# and C++ compilation and execution working the product has the ability
to be extended using command line techniques and more complex Windows API based
functions using C# and C++.

4.3 STORING TECHNIQUE DETAILS
I had to consider a storage mechanism for the technique's details. MySQL was considered but I
wanted the infrastructure cost of the tool to be as low as possible. Having used JSON.NET for
the reporting feature, which was fast and efficient to code, I decided to save each techniques
information in its own JSON file that would be loaded when selecting that technique from the
menu.

Sample JSON file storing technique information.

4.4 DYNAMICALLY ADDING NEW TECHNIQUES
I wanted the ability for users to easily extend the product themselves using command line
techniques. To accomplish this, I created templates of source code files that would execute any
command based on which template was chosen. The biggest challenge for this feature was
learning how to properly escape commands that contained special characters, serializing the
escaped commands and placing them in the source code templates.

Command Prompt:
cmd /c "your command"

PowerShell:
powershell -command "your command"

The relevant source code template is then saved as a new technique, which simply uses
Process.Start() to launch the new technique, giving users the choice to add it to a campaign or
run the technique manually.

4.5 FILE STRUCTURE
In order to load, run or log techniques that have been ran, filenames of the technique's source
code were used. This brought additional challenges as it would cause exceptions in certain use
cases, e.g., where a user tries to create a custom technique using special characters.

This required additional handling and validating of user input, using regular expressions to check
the technique titles and improving the responsiveness of the user interface by creating relevant
message pop ups informing the user that only alphanumerical characters were accepted for new
techniques.

5 FUTURE DESIGN CONSIDERATIONS
For future design considerations, there are several things I would change given what I learned
during the development process. Firstly, I would design it as a platform rather than a tool
involving a web interface. This web interface would communicate with a server. The server
would then communicate with GUI-less agents for Windows and Linux threat emulation.

As well as this I would like to have developed more Windows API based techniques, specifically
around process injection and defense evasion techniques aimed at evading enterprise security
solutions, such as API unhooking which would blind anti-virus/Endpoint Detection and
Response software. I would also consider developing a shellcode generator similar to
Metasploit's or at least creating various options for shellcode wrappers.

I would like the future design to have a great focus on testing Data Loss Prevention solutions,
given how serious the consequences can be for an organisation if a data breach occurs.

In order to achieve these ideal features a variety of new languages would need to be learned and
more low-level programming such as for shellcode would be necessary as well as new research
into developing techniques for Linux systems.

6 PRODUCT TESTING
In order to test the final product, there were two major stages of testing performed. The first
involved testing the techniques locally on a default Windows 10 virtual machine. Testing was
done to ensure tests executed as expected, testing for exceptions, testing UI elements and in
order to make improvements to the user experience.

The second stage of testing was done in collaboration with IT Carlow Computing Services. This
testing followed an assumed breach methodology and the results of this testing will not be
published. Based on the results I was able to recommend various mitigations to Computing
Services to help improve the overall security posture of IT Carlow.

